Clay Pigeon Shoot

on Lynx

An addictive game for the Lynx. A clay
pigeon flies across the screen and you shoot it using the space bar. The computer will sound a bleep if you hit it.

The skill levels determine how fast the pigeon flies. You have 20 shots and at the end are awarded your score.

```
100 REM *** CLAY PIGEON SHOOT ***
110 REM *** JOANNA GREENWOOD
120 LET J=@
130 LET T=0
140 LET F=125
```



```
166 INK 7
1 7 0 \text { CLS}
180 INPUT "SKILL LEVEL (1 TO 8)";E
190 IF E>B THEN GOTO 180
200 LET A=5
210 LET E=6
220 CLS
230 PLOT 4,F,246
240 PLOT G,F-1,241
256 PLOT 2,F+1,241
260 IF A>250 THEN GOTO 200
270 PLOT 4, B,5
280 PLOT 4,A,6
290 PLOT 4,B,6
3 0 0 ~ P L O T ~ 4 , A , 5 ~
310 IF KEY $=" " THEN GOTO 400
320 IF INK=0 THEN GOTO 350
336 INK 0
346 GOTD 230
350 LET A=A+E
360 LET E=E+E
370 IF KEY $=" " THEN GOTO 400
380 INK 7
390 GOTO 230
```



```
410 LET J=J+1
4 2 0 ~ P L O T ~ 0 , F , 2 4 0
430 FLOT 2,F,5
440 IF INK=0 THEN GOTO 400
```

```
450 INK 0
460 GOTO 420
470 IF A=F THEN GOTO 500
480 IF B=F THEN GOTO 500
```



```
5 0 0 ~ L E T ~ T = T + 1
510 BEEF 50,100,63
520 INK 广
5 3 0 ~ P L O T ~ 4 , F - 3 , 2 ~
540 PLOT 4,F+3,2
5 5 0 ~ P L O T ~ 4 , F - 3 , 8
5 6 0 ~ P L O T ~ 4 , F + 3 , 8
570 PAUSE 2500
586 CLS
590 GOTO 636
6 0 0 ~ I F ~ J > 1 9 ~ T H E N ~ G O T O ~ 6 7 0 ~
6 1 0 \text { INK } 7
6 2 0 ~ G O T O ~ 2 7 0 ~
630 INK 7
640 LET A=5
650 LET B=6
660 GOTO 230
676 CLS
680 INK 7
```



```
7 0 0 ~ U D U ~ 2 4
710 IF T<>1 THEN LET O$="S"
720 ELSE LET O$=" "
73@ PRINT "YOU SCORED ";J;" POINT";O$
746 PRINT "USING 26 SHOTS"
7 5 0 \text { VDU } 2 5
760 FRINT @ 3,70; "WOULD YOU LIKE ANOTHER GO (Y/N)"
770 IF GET&="Y" THEN GOTO 120
780 END
```

Clay Pigeon Shoot by Joanna Greenwood

Format

on Dragon

Dragon and other micro users will find this set of routines to be a time saver. They allow a programmer to define sentences and have them printed on the screen without having to count up sentence length to avoid "wrap-around". The routines are particularly useful for displaying game instructions, pages of information, etc.
Lines $10-60$ show how sentences are
defined, while lines 1000-1050 and 10601090 are the routines which handle the screen formatting.

The subroutine at 1000 adds a space to the sentence or phrase, since a space is used as a cue to print a word. Missing this out will mean that the last word of a sentence is not printed.
$\mathrm{L} \$$ is used to hold each character of the sentence in turn. If L\$ is a space, Chr\$(32), the subroutine at 1060 is called before the next group of characters is processed. W\$ is used to hold each group
of characters.
The subroutine at 1060 calculates whether or not a word will fit on to the current print line. Pos (1) returns the current horizontal print position - note that the routine could be adapted for use with a printer by using Pos (-2). If a word will not fit on to the print lines, a line feed (Chr\$(13)) is printed before the word is displayed.
Removing the Rem statement in line 1080 will cause each new sentence to be printed on a new line.

```
10 NC = 32: REM SCREEN WIDTH (NUMBER OF
    COLUMNS)
20 CLS
30 AS% = "THIS IS THE FIRST SENTENCE WHICH
    IS TOO LONG TO FIT ONTO A SINGLE LINE.
    ":GOSUB1000
40 Ag= "THIS IS THE SECOND SENTENCE,
    WHICH IS ALSO TOO LONG TO BE DISPLAYED
    ON ONE LINE.": GOSUB 1000
50 REM REST OF PROGRAM
60 END
```

$1000 \mathrm{LS}=\mathrm{n}$ ": WG = "": AS = AS + CHRS(32)
1010 PRINT STRING $\neq(3,32)$;
1020 FORI $=1$ TO LEN (A\$)
1030 L\$ $=\operatorname{MID\$ }(A 8, I, 1): W 8=W 8+L \$$
1040 IF. L8 = CHR\& (32) THEN GOSUB 1069
1050 NEXT: RETURN
1060 IF POS $(\phi)+$ LEN (W\$) $)$ NC THEN PRINT CHR\$(13); 1070 PRINT W\&;

1080 REM IF MID\$(W8,LEN(W\$) $-1,1$) $=$ "." THEN PRINT CHR\&(13);
1090 W8 = " " : RETURN

Format
by B Skinner

