COMPASS

Points the RIGHT way to machine ccde

COMPASS

Points the RIGHT way to machine ccde

100000088088800800800880888

ggoeogoooooooooooooooe

Contents

Introduction
Installation
Overview . « . . « . .
Summary of Commands .
Editing Commands . . .
Assembly Commands . .

Loading and Saving . .

General Purpose Commands

Memory Map « .
Error Messages
Syntax « « 4« « & 4 4
Pseudo-ops

Conditional Assembly .

Format of Source Programs

Compression

COMPASS

by Level 9 Computing

Roading « « o o ¢ o o« = 0 9
Index '« o & 2 s v o8 s s
Copyright

(c)

Level

9

Computing

1983

11

14

b 4

19

21

26

27

29

30

32

34

35

Introduction

Compass (Compression Assembler) was produced by, and is copyright (C)
of Level 9 Computing, 229 Hughenden Road, High Wycombe, Bucks.

Compass is a full 8K assembler for the Z80 assembly language. It uses
compression techniques to reduce the amount of valuable RAM needed for
source and symbol space — to about half that needed by other assemblers.
This allows bigger programs to fit in memory and speeds up loading and
saving to cassette.

Two versions of Compass are supplied on the cassette. The first uses

8K bytes of user RAM and assembles at about 3000 lines per minute. The
second version uses 256 bytes of user RAM (the other 8K fits in the unused
8K of alt. green screen memory) and assembles at about 500 lines per
minute.

This manual describes how to use Compass and gives technical details to
help you get the best from it. If you have never used Z80 assembler

before you are advised to obtain one of the books suggested near the end
of this manual.

gogooogoogogoaooooooooaaee

Installation

Each side of the cassette has two files recorded on it. The two sides

are the same but recorded in a slightly different format to suit different
cassette recorders. A good cassette recorder will load both sides of the
cassette, however the majority may only reliably load on one side of the
tape. Once you have identified the side that your system will load you
might like to make a backup copy of compass on one of your own tapes,

this make it easier to load the next time you want to use Compass.

The two files are both copies of Compass; they are recorded closely following
each other on the tape. The first copy occupies 8K bytes of memory from

LBPP@ to &9F2@. The second copy occupies 231 bytes from &9F@@ to &9FE7 plus
the 8K bytes of alt. green screen memory (see section on MEMORY MAP for
details.)

Loading
The first copy is loaded by the monitor 'R' command. From Basic enter:

MON

#D44 3B64 630E 24BE

4D2A ¢18C FFFF 2¢EF 63@D FFFF 9FFF 24BD
adaiiPes

*R "COMPASS"

Start the tape on PLAYBACK. When loading is finished the cursor reappears.
You could now either save a backup copy of Compass:

*D B8p@P OF2¢ § "COMPASS"

or start Compass immediately:
*G 9Fgg

The second copy is similar, although it contains a relocator to move
Compass into the alt. green memory. From Basic enter:

MON

$D44 3B64 63PE 24BE

4D2A 018C FFFF 2@EF 63¢D FFFF 9FFF 24BD
«ZowsPoe

*R "COMPASS"

Once loaded the relocator must be run. However if you want to save a backup
copy this must be done before doing the relocation. This is because the
alt. green memory bank cannot be loaded or saved to tape.

To save a backup of the second Compass file enter:

*D 7E@@® 9FE7 @ "COMPASS"

To relocate compass enter:
*G 7EQP

Relocation takes about five seconds, when complete the cursor reappears.
Now continue the same as for the first copy; te start enter:

*G _9F@@

If you Quit Compass it can be restarted by the command:
*G 9F@3

This works for either version.

With compass installed you can now enter a new source with the Input
command or return to the monitor with Quit to load a previously saved source.

Before using Compass it helps to have a working knowledge of using the Lynx
monitor. This is described in the Lynx User Manual.

googoogoooQooooogoagooed

Overview

I Compass a ZBO assembler program is a number of source lines, but unlike
Bamio these lines are not given line numbters. However the List and Assemble
aommands put a line number at the beginning of each source line displayed
und these can be used to find individual lines using the Position command.
In effect you can pretend that the numbers are there, but that the source
in being continually re-numbered.

Anything may be put in a source line (except control-codes such as ESC or
RETURN), but Compass will not Assemble any line that it does not understand.
A valid source line has the general format:

symbol opcode operands ;comment

All these four fields are optional, but an opcode will be present if
operands are also there, and if the opcode is EQU then symbol must be
present.

symbol, if used must occur at the start of the line. On entering the line
no spaces must be put after the colon (":") prompt. When the line is
listed one space is put between the line number and the symbol.

opcode must have at least one space entered before it, so that when listed
two spaces occur between the line number and the opcode. More than one
space will still be valid, but obviously this will use up more memory.

operands are determined by the opcode for this line.

jcomment may occur on any source line. The first semi-colon (";") on a
line that is not part of a string or character constant causes itself and
all following characters up to the end of the line to be ignored by the
Assemble command. This is the equivalent to the Basic REM statement.

The total length (excluding line number) of any source line may not exceed
80 characters. It will be truncated (without any error message) if it's
too long. If you use Change to make a line longer than 80 characters this
produces the error "8, Too long" and the Change terminates

Command Summary

Compass provides the following commands, usable when it has been started.
The commands are summarised below and described later on the pages referenced.

Page Command Parameters Description
11 A options Assemble source
8 B Move to Beginning of source
8 Cc stringl string2 Find and optionally change stringl to string2

throughout source

8 D Inum lnum D elete source lines

9 F string Find line(s) containing string

17 G Execute assembled object code

9 I 1num Insert lines into source after line lnum
10 L lnum List source lines.

13 N low-addr high-addr News (deletes) program source

12 (o] low-addr high-addr Set Object code limits

10 P 1num Position a source line for editing

17 Q Quits Compass, returning to the monitor
13 R address Relocate object code

18 S Clear screen

12 T low-addr high-addr Set symbol Table limits

14 w UWrite source to tape

17 ? Display source, object and table limits
10 (Control)Q Recall last command or edit source line

goegaggooooaooooooagonte

fhe lnum parameter (line number) defaults to the current line (normally
the last line printed/listed/edited etc.) to save typing.

#trings in commands can be delimited by any sensible character (i.e. not
wpace, return or ESC). The start and end delimiter of each string must
be the same.

The Assemble, Change, Find and List commands repeat over a range of lines.
ESC ends the command and holding down a shift key pauses it. Change prints
snch source line it finds then waits for ESC, return or space to be
pressed. Input only ends when an empty line (i.e. nothing after the
prompt) is entered.

Note that line numbers are in hex, and that the program is automatically
renumbered following any change so you will normally use Find to locate
a mection of source which is of interest rather than using these numbers.

Editing Commands

The commands for the entry and modification of source programs are
Begin, Change, Delete, Find, Input, List, Position and (Control)Q.
BEGIN

B
The first line of the source becomes the current line. If the source
is empty then error "4, Not found" occurs. Begin is normally used
before Change or Find to ensure that all source lines are found or
changed.
CHANGE

C stringl string2
Example: C ':" ";"
Starting from the current line find the next line containing stringl

(excluding delimiters) and display it on the screen. Pressing return
replaces the first occurrance of stringl in that line with string2

and displays the replaced line. Pressing space leaves the line unaltered

and continues to find more lines containing stringl. Pressing ESC
at any time stops the change.

The current line is set to the line at which ESC was pressed to stop
the Change or to the end of the source if Change didn't find any
(more) lines.
DELETE

D lnum lnum
Example: D 1A 21
Deletes the current line if just D is entered; A specified line if

one lnum is given; or an inclusive range of lines if start and finish
line numbers are given.

geedagooooaaooeoagaoanae

If Jjumt D was entered the text part of the deleted line is listed,
A0 you oan re-input the line if you typed D by accident.

The current line is set to the line following the last line deleted.

FPIND
F string
Example: F '(HL)'
Btarting with the current line find the next line containing string
(excluding delimiters) and print it. If one of the shift keys is
hald down find will pause after each line is displayed until ESC
in pressed or the shift is released.
ESC will stop find at any time.
The current line is set to the line at which ESC was pressed to stop

the command or to the end of the source if Find didn't find any
(more) lines,

INPUT
I lnum
Example: I ¢

Insert lines after the specified line, or the current line if I

is entered by itself. If lnum is zero then lines are inserted before
the first source line and if lnum is a very large number (e.g. 8¢@@)
lines are inserted after the end of the source.

Input gives a prompt of ":" following which you can type in the new
source line. Pressing return inserts the line into memory and gives
another prompt. To stop Input press return after the prompt without
antering a line (i.e. enter a blank line).

The current line is set to the last line inserted.

LIST
L lnum
Example: L 1A

Lists source lines starting with the specified line or the current
line if just L is entered.

Pressing ESC stops List and pressing one of the shift keys pauses
list until ESC is pressed or the shift key is released.

The current line is set to the line at which ESC was pressed to stop
the command or to the end of the source if the last source line
was reached.

POSITION
P lnum
Example: P

If P is entered on its own the current line is displayed.

If a line number parameter is given P sets the current line to that
line and lists it. If the requested line does not exists or the current
line is the end of the source then error "4, Not found" is displayed.

Use P to set the current line to a specified line before using Find,
Change or Delete; or to put a source line into the edit buffer before
using (Control)Q.

(Control)Q

To use (Control)Q Press 'Q' while the control key is held down.

This must be typed as the first character on a line otherwise
(Control)Q has no effect. This is similar to Lynx Basic.

(Control)Q re-displays either the last command typed (if the command
was illegal and gave an error message) or allows a source line to

be edited following a Position command.

Warning: (Control)Q only works if entered as the first character of

each line. Pressing ESC, delete or any other such key disables (Control)Q
for the rest of the line. Do NOT attempt to use (Control)E - this only
works for lynx Basic and may crash the Lynx i% used from the monitor

or from within Compass.

10

e00000000040000000000¢0¢0¢838

Assembly Commands

The five commands Assemble, New, Object, Eelocate and Table are all
used to control the assembly of source into Z80 machine code.

SSEMBLE

A options
Example: A LS
Assembles (translates) the source into machine code using options
to control the assembly. If no options are given then a normal assembly
results.
If any error is detected during the assembly the line in error is
displayed followed by an error message. The assembler is two-pass
in operation so some errors (for example Duplicate symbol) are given
before others (for example Undefined symbol). Other errors (for
example Bad opcode) are given twice, once on each pass.
The symbol table required for an assembly is created in the area
allocated by the Table command and object code is placed under
control of ORG psuedo-ops within the source and by the Object and
relocate commands.
The options which can follow the 'A' on the same line are:

L produce an assembly listing

N do not store the generated object code

§ produce a symbol table
After an assembly the current line is always the beginning of the source.
Pressing ESC at any time during an assembly stops the command.
If the 'L' option is specified an assembly listing is produced in

the following format:

001A 8800 ED7B LLO1l LDIR ; Copy

I———- Source line

Object code

Address of object code

Line number

0BJECT

0 low-addr high-addr
Example: O 88@@ 8FFF
Sets the address range to which object code can be Assembled.
If the assembly would generate code outside these limits the assembly
is aborted with the errer "18, Code range"
The address at which the generated cbject code is stored will be the
low-addr given in the Object command unless an ORG pseudo-op is used
of Relocation is in effect.
TABLE

T low-addr high-addr
Example: T 78¢¢ 790¢
Sets the address range used for storing the symbol table generated
by an Assembly command. Each symbol defined in the source will require
four bytes of Table space. If the table if too small then the

assembly is stopped with the error "24, Too many symbols".

Each group of four bytes in the table has the format:

T T
Address of Value of

source line symbol
1 1

The first two bytes form the 16-bit address (low byte first) of the
start of the source line which defined the symbol. The third and fourth
bytes store the 16-bit (low byte first) value of the symbol. If the
symbol represents an 8-bit value or result then the fourth byte will

be zero, or &FF if the 8-bit value is negative.

The highest address actually used during an Assembly can be displayed
by the ? command.

12

gooogooagoaoooaee

N low-addr high-addr

Example: N 7¢0¢ 9EFF

Himilar to the NEW command of Lynx Basic but also sets the address
pange uped for program source. The main use for this is to increase
the amount of memory available for source programs.

To delete a source from memory it is often easier to use "D @ FFFF"
If you change the low-addr of the source area then any files you

nubsequently load from tape will have to be moved by the monitor 'I
command to its new address.

RELOCATE

R address
Example: R 64@7
fSets the address at which object code is stored during an assembly.
"R ¢#" is the default and turns offthe relocation so that object code
im stored at the address to which it is assembled (within the limits

set by the Object command).

a.@. R 64¢7
0 9F@@ 9FFF

thon assembling the source:

ORG &9F1¢
DEFB &76

will store the value &76 at address &6417

13

Loading and Saving

Compass provides no direct commands for saving or loading source

or object files to tape. However saving a source program is assisted
by the Compass Write command, and loading any file is easy using the
monitor.

SAVE

)
Example: W(return)(Control)Q(return)
Write quits Compass and returns to the monitor. It also fills the
edit buffer with the monitor command that dumps the source to cassette,
so that once in the monitor all you do is press (Control)Q followed
by return. (Control)Q recalls a command of the form:

*D 647 6438 ¢ "
After pressing (Control)Q but before (return) you can edit this command
(using the cursor keys, as usual) to put in your own file-name, if
required.

After saving return to Compass using the command:

*G 9Fp3

LOAD

To load a previously saved source you use the monitor 'R' command.
Return to the monitor using Quit, read the source then return to
Compass:

¥R

*G 9F@3
APPEND
Since Compass relies on the monitor commands for saving and loading
tape files this makes it difficult to append source files - the monitor

will only load a saved file back to the address originally used for
the save.

14

eeaged000000000000000000

To append two files requires the use of several monitor commands
and just a touch of hex arithmetic.

Suggested Method

If

the two files are already saved on tape called "A" and "B" then

this sequence will append "B" to the end of "A":

1)

2)

Load "A" into memory and use the Compass ? command to find its
'low' and 'top' addresses.

Example: *R "A"

*G 9F@3

L]

Source 64@7 77FF Top= 642C
Object 78@@ 7DFF Top= 78¢9
Reloc @@@@ Ent= @@@@
Table 7E@@ 7FFF Top= 7E@C

This gives 'low' as &6407 and 'top' as &642C.

Load "B" and also use ? but only note its size ('top'~'size')

Example: Q
¥R npn
I
*G 9F@3

2

Source 64¢7 77FF Top= 642F
Object 67@@ 7DFF Top= 7809

Reloc @@d@ Ent= @¢0@
Table 7E@@ 7FFF Top= 7E@C
Q

*A 642F 6497
€836 P28 D6

This gives the length as &642F - &64¢7 = &P@28

File "B" is now copied up in memory to make room for "A" which
will be loaded below it. Quit compass and use the monitor 'I'
command:

I low-address-of-B top-address-of-A size-of-B

Example: *1 64@7 642C @@28
15

4)

5

6)

7)

16

Stay in the monitor and load file "A". This will exactly fit the
gap below "B" created by step (3) above.

Example: *R "A"
AN

*

Using the monitor 'H' and 'M' commands examine the area around
the end of file "A" - where it meets the start of "B'". The bytes
of interest are the last three of "A" and the first byte of "A",
so using 'H':

H top-of-A-3
Example: *A 642C 3
642F 6429 77

*H 6429
6429 00 C8 0A 03 50 52 53 E7

These four bytes should be modified to be spaces (hex 2@)

Example: *M 6429

6429 (0p) 20
642A (c8) 2¢
642B (PA) 2¢
642C (¢#3) 2¢
642D (58) .

Now warm-start compass. This will give a '"Bad source" error since
you have modified bytes within the source area. Using List and
Find locate the first line of file "B" and remove the extra

four spaces which have been added.

Example: *G 9F@3

7, Bad source

P 6

#dd6 PRS POP HL
C " "omn

@@@6 PRS POP HLreturn

The append is complete, With pratice this process will become
almost automatic. You can now continue to use Compass; it might
be a good idead to save the appended files, lest some accident
should occur.

General Purpose Commands

The other remaining commands include Go, Quit and 2.

GO

G

Go executes the object code last assembled from the point in the
code defined by the ENT pseudo-op. If the last assembly did not

define an ENT address then Go has no effect (no error is displayed,

Compass continues awaiting another command).

Warning: Do not use Go when Relocation is in effect.

QUIT
Q
Quit exits Compass and returns to the monitor. The edit buffer is

filled with the command "G 9F@3" so if you Quit by accident then
(Control)Q(return) will return you to Compass.

Displays the 'low', 'high' and current 'top' addresses for the source,

object and table areas, plus the current values for Relocation and
ENT.

The display is as follows:

Source aaaa bbbb Top= cccc
Object mmmm nnnn Top= ©000

Reloc pppp Ent= qaaq
Table ssss tttt Top= uuuu

'aaaa' and 'bbbb' are the low and high addresses of the current
source area as defined by the New command. 'cccc' is the current
maximum address used by the source.

17

-

L.}
'mmmm' and '‘nnnn' are the low and high addresses of the current Memory Map
object area as defined by the Object command. 'oooo' is the address -

of the last byte of generated object code produced by the last Assembly. S .

o Th ' o ' .
If the last Assembly did not generate any code then this value is the poweri‘ui meilzhod of 'bevl-mwltching u§8d ??y the L_w{rnx T beydnd
3800 Al = e scope of this manual. More comprehensive information is available

in Camputers newsletter: "LYNX USER" (June 83 issue) or in the Lynx

Techincal Manual.
'pppp' is the current value of the Relocate command. If relocation 1 1

i in effect th hi lue is | . -
is not in effec en this value is @@@@ The 48K LYNX uses 24K RAM for the screen display, 8K is unused and
'qaqq' is the address last assigned to an ENT pseudo -op. If the hidden away in Bank-3 (this is the alt. green memory) and 16K is

di i) :
last assembly did not define an ENT then this value is @@@@ and ad irectly available to the user (although 2%K is already used by the

i d Basic.
if two ENTs were defined the value given is the address of the last s e 44 asic.)

one in the source. =] The 96K LYNX is similar with an additional 24K directly accessjible

and the other 24K located at addresses normally occupied by the

'ssss' and 'tttt' are the low and high addresses of the current Operating System ROM. This is summarised belo
- L

symbol table area as defined by the Table command. 'uuuu' is the -
maximum+l address used for symbol space during the last Assembly.
If no assembly has taken place since Compass was cold-started then

this value is @@@@. - Bank o000 2008 |400p | 6000 SPvd | AGGS | code | Egog
1FFF 3FFF SFFF 7FFF 9FFF BFFF DFFF FFFF
L)
1 User RAM
B] Plug
2 Operating Red Blue in
System ROM
- 3 alt. Green
green
ad 48K LYNX
Lad Bank 0008 2000 APPP | 6000 8¢@P APP® | COpP | EQBP
1FFF 3FFF SFFF 7FFF 9FFF BFFF DFFF FFFF
- 1 User RAM
1 2 Operating System Red Blue
3 Alt. Green
™ green
96K LYNX
ey
el
18 IS 19
L

The Lynx monitor uses memory between &6@@P and &64P6 as its stack
and workspace. Basic uses the monitor and also uses memory between
&9FAC and &9FF@ as its stack.

Compass occupies &B000 to &9F2@ or &9F@@ to &9FES if you use the
second copy on the tape. The second copy, whilst making an extra

7%K available clashes with Basic - so you can't use these two at the
same time without taking extra care - see below.

Compass initialises the source, object and table areas on a cold-
start using values read from a table stored at addresses &8¢@@—-480¢B.
If you have saved your own copy of Compass (see INSTALLATION) you
could personalise this by altering these values to reflect your

own usage.

&8PP1,&80P9 Low address for source
&8PP3,&80@P2 High address for source
&80P5,480P4 Low address for object code
&8(Pp7,&80P6 High address for object code
&8pP9,&8PP8 Low address for symbol table
&BPPB, &8¢@%A High address for symbol table

Using Basic with Compass

Basic requires the vector at address &9FFS and &9FF4 in order to
initialise by the monitor 'J' command. Neither version of Compass
uses this address so you can always use the 'J' command to return to
Basic after using Compass. Then do 'NEW' to clear any garbage put

by Compass into the Basic program area.

If you use the second copy of Compass then running Basic will overwrite
part of Compass. This will crash if you subsequently try to re-start
Compass. The solution is to save the overlapping memory area (&9F@@-
&9FE8) after Compass has been. installed, then only re-load this area
when moving from Basic to Compass.

20

80010

Error Messages

All error messages start with a number to identify the message uniquely.
Additionally, where an error occurs during Assembly the source line
containing the error is listed, The error messages are listed below

in numerical order, together with an explanation of each message.

1, Bad arguments

A Compass command was followed by too few, too many, or the
wrong type of argument(s).

2, Bad command

The first non-space character of the command was not a valid
Compass command.

3, Escape

The ESC key was pressed during an Assemble, Change, Find or
List command. The current line is set as follows:
T oIr you were assembling it is set to the first line.
During List it is the last line displayed.
During Ehange or Find it will be the last line processed.
If in doubt Position will display the current line.

4, Not found

Occurs in response to a Position command. If just P is entered
This indicates that the previous Change, Find or List command
reached the end of the source (i.e. was not stopped by ESC).
If P was followed by a line number then no line with this
number exists. The current line is set to the end of the source.
5, No memory
A Change or Input command caused the source to grow and there
was not enouéh memory for this. This can also occur when using
(Control)Q to edit a line. During Input the last line entered
will have been lost and Compass will terminate the Input command.
During Change or edit the affected source line will have been
lost. In future use the ? command regularly to keep track of
program size.

21

6, Corrupted

The code of Compass itself has been overwritten. The message

only occurs once as Compass then remembers the new checksum value.
If the error occurs again then this is because Compass Has

been overwritten again. The safest way to recover is to switch
off and start again, reloading Compass and the latest version

of the source from tape. Running a corrupted version of Compass
could cause anything to happen.

7, Bad source

The source file has changed since Compass last examined it.

The message only occurs once as Compass then changes the checksum
back to its correct value. Continuing to use Compass may cause

it to crash, but if you wish you could use commands such as ?

or List to pin down the problem. -

8, Too long

A Change command would have resulted in a line that was too long
(over 80 characters) so the line has not been changed. The command
is terminated.

9, Duplicate symbol

Occurs during an Assembly. The symbol defined in the line listed
above has already been declared earlier in the source: Labels
cannot be redefined. Use Find to locate the earlier declartion.
Note that Change can be readily used to change some occurrances
of a symbol, leaving others.

10, Bad opcode

Occurs during an Assembly. The opcode or pseudo-op in the line
listed above is not valid. There must be at least two spaces in
the source line between the line number and the opcode, otherwise
Compass will take the opcode as being a symbol instead. This error
will be given twice for each source line with this error during
one Assembly command.

11, Bad operands

Occurs during an Assembly. The operands in the line listed
above are not valid. This error will be given twice for each
source line with this error during one Assembly command.

pogg00000000000000000088

12,

13,

15,

18,

Brackets

Occurs during an Assembly command. A closing bracket is missing,
or there is an error ahead of the bracket. This error will be
given twice for each source line with this error during one
Assembly command.

Overflow

Occurs during an Assembly command. During the evaluation of

an expression in the line listed a result was calculated which
was too big to be held in 16 bits (i.e. over 65535 or under
-32768). This error only occurs once for each source line with
this error except for ORG, DEFS, IF and EQU psuedo-ops.

Bad char

Occurs during an Assembly command. A character constant has no
closing quote. The same type of quote must start and end a
character constant, This error will be given twice for each
source line with this error during one Assembly command.

Bad constant

A '&' was not followed by a hex digit or a hex/decimal number
became too big to be held in 16 bits (over 65536). This error
will be given twice for each source line with this error during
one Assembly command.

Undefined symbol

A label used as an operand in the line listed above is not

defined anywhere (i.e. does not appear in the first column

of any line). Symbols used as operands in ORG, DEFS and IF
psuedo-ops must be defined before they are used: forward references
are not allowed in this case for efficiency reasons.

Bad instruction

The operands used in the line listed above do not match the
opcode. This error will be given twice for each source line
with this error during one Assembly.

Code range

Occurs during an Assembly command. A byte of object code would
have been placed outside the limits previously set by the Object
command. Use ? to display these limits. This error will never

be generated for an ORG or DEFS, The assembly is aborted.

23

19, Missing symbol

Occurs during an Assembly command. No label occurs at the
start of the EQU psuedo-op in the line listed above.

21, Too many operands

Occurs during an Assembly command. Characters have been found
after the end of the statement listed above which were not

part of a comment. Also occurs if DEFB is given more than

four operands. Perhaps the semi-colon ('";") which should start
the comment has been omitted? This error will be given twice

for each source line with this error during one Assembly command.

22, Value

Occurs during an Assembly command. An expression in the line
listed above that should produce an 8-bit result is too large
(over 255) or if negative is under -128.

23, Too far

Occurs during an Assembly for JR and DJNZ opcodes. The relative
jump in the line listed above would jump more than -126 to
+129 from the current address.

24, Too many symbols

Occurs during an Assembly command. Too little symbol space
was allowed for the source being assembled. The remainder of
the assembly is aborted. Four bytes are required for every
symbol defined. Use the ? command to find out much symbol
table space is currently reserved and Table to allocate more.
After a successful Assembly ? will tell you how much space
was actually used.

25, Press Control-Q RETURN to re-start
Command is: G 9F@3

Occurs in respense to the Quit command. You are returned to

the monitor. You may then use 'J' to return to Basic or use

any other monitor command.

If you did Quit by accident then (Control)Q(return) will return
you to Compass. Alternatively "G 9F@3" has the same effect.

24

poogQgo0oaQQooooooaooagoedsd

Press Control-Q RETURN to save.
Command is: D xxxx yyyy 0 ""

Occurs in response to the Write command. You are returned to

the monitor. If you then t;pe (Control)Q this recalls the
command 'D xxxx yyyy O ""' where xxxx and yyyy are automatically
the current 'low' and 'top' addresses for the source. You may
edit this command (e.g. to put in a file-name) thén press

RETURN to save the source. Once saved you can return to Compass
by the monitor command "G 9F@3".

Syntax

The syntax of Z80 assembler is reasonably standard. This section

lists some of the differences between Compass and the versions described

by the books mentioned at the end of this manual

Expressions

An expression is a sequence of one or more elements separated by

'+'" or '-', where an element may be a constant, a symbol, a character
constant or '$' representing the value of 'the current assembly address
counter, Expressions are evaluated left to right and may not contain

brackets.
Constants

All numbers are assumed to be in decimal unless preceded by '&'
or followed by 'H'.

1 decimal or PA hex
19 decimal or @A hex
11 decimal or @B hex

Examples: &A
@AH
11

n

[}

The first character of a constant must either be '&' or a digit
‘@' through '9'.

Character Constants

A character constant may be used anywhere in place of a decimal or
hex constant. It's value will be the ascii code of the character
enclosed between the two quotes

Examples: 'A! 65 decimal or 41 hex
"a'" = 97 decimal or 61 hex.

String Constants

A string can only occur as an operand to the DEFM psuedo-op. A string
may be delimited by any sensible character (i.e. not ESC, return
or semi-colon). The start and end delimiter must be the same character.

Examples: /'"name'"/
"the string's contents'

Symbols

A symbol (label) can be any length up to the maximum length of a
source line. It must start with a letter ('A! through 'Z' or 'a'
through 'z') but can contain both letters and digits. Lower case
is not the same as upper. case.

26

000000000808

Psuedo-Ops
In addition to the standard Zilog opcode nmemonics Compass recognises
the following psuedo-opcodes:
DEFB DEFM DEFS DEFW ELSE END ENT EQU IF LIST

These are described in detail below,

DEFB expression ,expression

Example: DEFB &D,@

DEFB accepts between one and four operands. each operand is an expression

which evaluates to an 8-bit result in the range -128 to +255 inclusive.
For each operand one byte of object code is generated with the same
value as the result of that expression.

DEFW
DEFW expression
Example: DEFW start+3

DEFW always take one operand which must be an expression which evaluates
to a result in the range -32768 to +65535 inclusive. The 16-bit result
il divided into two B-bit values, and each is used to generate two

bytes of object code. The first object code byte is the low 8 bits

of the 16-bit result and the second bytes is the top 8-bits.

DEFS
DEFS expression
Example: DEFS 2

DEFS does not generate any object code. It takes one operand which is
an expression. The assembly counter is incremented by the value of

the result of that expression, thus leaving a 'hole' in the object code.
This is useful for defining data areas (workspace, variables, stack
mpace etc.)

The expression must not forward-reference symbols not yet defined

in the assembly.

27

DEFM

DEFM string
Example: DEFM "Please press RETURN:"
DEFM takes one operand which must be a string of zero or more characters
with start and end delimiters. The two delimiters must be the same
but can be any sensible character except a semi-colon.
For each character except the delimiters one byte of object code
is generated which will have the value of the ascii code for that
character. There is no limit on the length of the string, except
that it must all be on one 80-character source line.
EQU

symbol EQU expression
Example: INK EQU &625B
EQU defines a symbol to have a constant value. Like comments EQU
makes a program easier to understand and debug at the expense of
making the program bigger.

e.g. The program:

LD A,1
LD (&B625B),A

could be re-written as:

GREEN EQU 1
INK EQU &625B

LD A,GREEN
LD (INK),A
This makes it clearer that this is equivalent to Basic's:

INK GREEN.

28

pogogoQoagoogQoooogoaeagls

Conditional Assembly

'hree psuedo-ops are used to provide conditional assembly:
IF ELSE END

fEND
END

This always signals the end of a conditionl section of a program.
The line following an END is always assembled.

ELSE

ELSE

If encountered on its own ELSE causes assembly to be suspended until
the next END is found or the end of the source is reached. This is
not intended to be its normal usage, however.

LK
IF expression
Example: IF debug

IF tmkes one operand which must be a expression which results in a
16=bit result in the range -32768 to +65535 inclusive. The expression
must not forward-reference any symbol not yet defined by the assembly.

[f the expression has a result of zero (@) then assembly is suspended
until the next ELSE or END pseudo-op, or the end of the source is
reached, Assembly continues with the statement following the next
ELSE or END.

If the expression has a non-zero result then the IF has no effect
Hummary

[T and END should occur in pairs. Optionally an ELSE may be placed
between the IF and before the END. Source between the ELSE (if present)

and the END is only assembled if the expression is zero. Otherwise
the source between the IF and ELSE is assembled.

29

Source Format

This section is intended for the more experienced user. It describes
the format used to store the source - in sufficient detail to allow
you to examine the source using the monitor 'H' and 'M' commands.
Additionally, if you get the error "7, Bad source" you could use

the monitor to find and perhaps correct the error(s).

The source is completely position-independant, and may by copied
around memory using the monitor 'I' command.

The general format for a source file is:

T LI T

Check Souree (o0} [Checksum
flag line

the brackets {] enclose a sequence which (if no source is present)
may not exist or may be repeated once for each source line present.

Each source line may be 1 to eighty bytes terminated by a @@ byte.

With no source in memory four bytes of source memory are used to
store the following:

@1 [0 FF FFA]

This sequence is stored by a cold-start (G 9F@@) or by the New command.

The first byte "§1" is the check-flag. A value of @@ supresses the
error "7, Bad source". Any non-zero allows this message to appear.

The second byte "@@" is the first byte allocated to the source program.
The value "@@" is used to mark the end of a source line. An empty line
marks the end of the program.

The third and fourth bytes are a checksum, calculated on the values
of all the bytes following the 'check flag' and before the checksum.

30

0000000000¢00¢00080¢080848¢¢

Example:
The following is a short Compass source program:

@@@1 ENT

P@@2 LOOP DI

#p@3 JP LOOP

This is stored in memory as:

@1 B3 @¢t AC 4F AF 5@ CB @@ D8 4C 4F 45 5¢ @@ @¢p C9 g4

33

Compass 'compresses' source files in much the same way as Lynx Basic -
by replacing sequence of characters within program lines by codes

that cannot be generated by the keyboard. As the sequence chosen
relate naturally to the structure of valid assembler statements

this allows faster assembly (and this is why some of the sequences

are of length 1).

Compression

The sequences are as follows:

Code Characters

Code Characters

8p A
81 B
82 o]
83 D
84 E
85 H
86 L
87 I
a8 z
89 P
8A M
8B AF
8C HL
8D BC
8E DE
8F SP
op IX
91 Iy
92 NZ
93 NC
94 PE
95 PO
96 (HL)
97 (BC)
98 (DE)
99 (Ix
9A (1Y
98 AF,
ac SP,
aD HL,
9E BC,
3z

9F
AQ
Al
A2
A3

DE,
IX,
1Y,
AF!
(c),
(sp),
(HL),
(BC),

LIST
ENT
IF
ELSE
END
ORG
EQU
DEFB
DEFW
DEFS
DEFM
ADC
ADD
AND
BIT
CALL
CCF

C3
c4
C5
C6
Cc7

Code Characters

CPDR
CPD
CPL
CPIR
CPI
Cp
DAA
DEC
DI
DJNZ
El
EXX
EX
HALT
IM
INC
INDR
IND
INIR
INI
IN
JP
JR
LDDR
LDD
LDIR
LDI
LD
NEG
NOP
OR

Code Characters

OTDR
OTIR
QuUTD
OUTL
ouT
POP
PUSH
RES
RETI
RETN
RET
RLA
RLCA
RLD
RRA
RRCA
RRD
RRC
RR
RLC
RL
RST
SBC
S5CF
SET
SLA
SRA
SRL
SUB
XOR

go0goQo0gggcgcesecscoooons

Spaces surrounding opcodes are automatically removed for further
compression. The spaces are added back for Change, Find and List.

Compass compresses source lines very efficiently. However symbols
and comments are usally the most significant contributors to the
size of the compressed source program. To get the best from
Compass therefore, keep symbols and comments short.

33

Suggested Reading

Many books are available about Z80 programming. They are all very
large books - which explains why this manual had to be short on
details of the Z80 assembler language. Some books you might like
to look at are:

280 Assembly Language Programming Manual

Published in the USA by Zilog, this is excellent for nitty-

gritty technical details, but is definitely not a "teach yourself"
book. As few places stock it in this country you would probably

need to order it via a good book shop.

Programming the Z80

Written by R. Zaks and published by SYBEX Inc.

This is an excellent introduction to Z8@ programming. It is
probably the best book for a beginner to buy (from your local
computer book shop, NOT from Level 9 please!).

34

poogedaeagedaceagdsd

A command
addresses
alt. green
append
assemble
assembly

B command

bank switching
Basic

begin

brackets

C command
change
character const.
check flag
checksum

clear screen
cold start
colon prompt
commands
comments

compreasion

conditional assem.

constante
Control E
Gontrel Q
agorruption
purrent line

D oommand

e Linnl

ilalh

dalining mymbolae
defm

dela

e l'w

Halote

el limlter

Index

B
17
2,3,19

11
11

29
26

10
10,14
22,30
7,8,10

B,19

edit buffer
editing

else

end

ent

equ

error messages
escape

execute
expression

F command

file name

find

first line
forward reference

G command
EO

H (monitor)
hex

I command

if
initialisation
input

insert
installation
introduction

J (monitor)

L command

line length
line number
list
listing

loading

10
10
29
29
IV
28
21

17
26

14

27,29

10
5,28
5,6
10
i1
3,14

35

M (monitor)
memory map
moniter

N command
new

0 command
object

object limits
opcode
operand
options
overview

P command
parameter
pause

position

16,30 T command
17,19 table
4,20 table format
token values
13 two-pass
13
W command
12 warm start
12 write
12
S %
5 ?
11
5

10
6

10
10

position independance

Pseudo-op

Q command
query
quit

R command
recall
relocate
relocation
REM
renumber
return

5 command
save

saving

shift

source area
source format
space

speed

string
string constant
symbol

symbol table
syntax

36

30
27

17
17
L7

13
10
3,13
13

5

5

8

18
14
14
8,10
13
30

8

2
7,26,28
26
5,26
12
26

12
12
12
32
21

14

14

14

