NILWUE

NAT!ONAL INDEPENDENT LYNX USER GROUP

NEWS

Magazine for LY NX Users
Volume 1. Issue 1.

NILUG NEWS

VOLUME 1. ISSUE 1.

CONTENTS
1= EDITORIAL -
i OUTFUT TO THE SCREEN.
8. USE THAT SPAaRE SOCKET .
= USEFWUL. LOCATIONS.
11 BEREAK KEY 2 TEXT.
1= ERROR MESSAGES. RESET =2 NMI .

All material published in NILUG MEWS is copyright (c) 1983 by NILUG.
Na part of this issue may he reproduced in any form whatsocever. The
publisher will give sympathetic consideration to regquests to copy
articles for npon—-commercial purposes. While every effort ies made to
ensure that this publication is correct the publisher accepts no
responsibility for errors in reproduction or interpretation of the
published material.

EITORIEAL

I purchased a LYNX during April and started digging arcund inside. I
made a few discoveries like Basic reserved words which are not in the
manuxl . I wondered what else the LYMX had to offer. Since 1 own
another well equipped microc I made a 2744 eprom reader and read the
two LYNX eproms into my other little beast. Then I hit the code with
a disassembler. About 180 pages of ocutput later there it was 1n 1ts
glory. Now all T had to do was find out how i1t all worked.

I soon found the lists of Basic reserved words, the Monitoer and a
very interesting bhlock of ram from &41EE to 62E0Q0 which had a lot of
pointers, jumps and data in it. ¥Finding out how data was displayed on
the oscreen was a little harder but I simply stuck at it and that is
no longer a mystery. Explaining it may prove to be quite another
matter. (See the article on output to the screen).

1 then looked around to see if someone had set up a user group. after
all 1 would 1like other= +to have the information I have gathered

iprovided that they give m= what they have discovered). I couldn™t
find a group. I then thought about the newsletter that Camputers are
going to publish but I'm sure you haven®t received your copy yet
erther.

It seemed it was up to me to start the ball vrolling and here 1t 1s.
My aim +or the group is to assimilate and disseminate information
about the LYNWNY for the benefit of members. The main offering will be
MIEHE NEWS which will be published six times a year. Other publicat
—1cns may faollow.

If o would like to see vowr name in print here’s your big chance.
Yau @ma, feel that vou can’t write or draw diagrams. Don’t worrvy about
that. Idea=z and what vou have tao say are far more important than how
you say 1t . 1'm sure I°11 be able to add a bit of polish 1f
necessary. All published material will be paid for so 1f¥ vou want
some extra pocket money start writing.

I db intend to take advertising. This will, however, be strictly
limited to a mazimum of say 13% of the newsletter. Taking advertising
has two advantages for members. Firstly it keeps down the cost of
membership. Secondly it allows you to see what products are on sale
for the LYNY without baving to wade through pages of adverts {for
other machines. However i+ yvou don’t agree with this policy then let
me know.

Articles, reviews, subscriptions etc should be sent to the address

inside the back cover.

FE.B.Foate
EDITOR.

OUTFHFUT TO THE SCREERN

I am going to explain how characters are output to the screen by
starting at memary location G000 and processing the eproms as if vou
had Jjust started vyour LYNE. The reason for this is that 1 have the
impression that there may be different versions of the LYNX eproms in
circulation. Consequently any addresses 1 give may not apply to your
machine. I have written to Camputers asbout this matter but so far 1
have had no reply. By starting at 0000 and working forward it should
enable you to examine yvouwr code should vou wish to do so.

I am going to assume that you understand binary 1logic (ANDing and
ORing} and a 1little about machine code. If you don’t and vou would
like to then drop me a line. If there is sufficient demand 1711 write
a +Ffew articles. One final point before we start, all addresses and
data are given in hex unless otherwise stated.

Starting at 0000 then, we find that interupts are disabled, 20 1ig
output tao port 80 and then a jump is made to 003R. Here we find a
rovutine which initialises the 6843 VDU controller. At 0052 a jump is
made to 168C.

at 168C a data table i1s copied. the stack pointer is set up, and a
routine 1s called to initialise ram. At 146B% the HL register pair is
loaded with the address of a string of bytes to be oaoutput to the
screen. The bytes are stored at 17ED and they look like this -

04 07 18 FZ F4 FS Fa F7 FB F? 19 0Aa 0A 0D 00,

In fact they display the LYNX logo which appears on the screen when
you start up.

Bytes to be output to the screen fall into I categories. Firstly
there are the special bytes which are less than 1F. These perform
functions like the 04 above which clears the screen. The 07 sounds
the beep etc. If these numbers seem familiar its because they are the
same as those used by the Basic VDU command.

The second type of byte is the normal character byvte and 1is in the
range 20 to JF. The third type is the graphics character and is in
the range E0 to F9. As vou can see there are seven bytes in the
sample above which fall into this group. They are FZ to F9 and they
form the LYNX logo. One final point to note about the string of bytes
is that it is ended with a null ie OO,

After HL 1s loaded with the address a routine at 3539 is called. This
routine will output +the string of bytes to the screen. In turn it
calls a routine at 352F which outputs a single character to the
screen. Now we call a "print/don’t print" routine at 2030. This
routine picks up a flag stored at &202. If either bit O or bit 7 is
set then output to the screen continues. Dtherwise a return is made
tc the character output routine.

If printing is to continue an address is picked up from 4200 and it
is loaded into the HL register pair. The BC register pair is loaded
with 204F and pushed onto the stack to form a return address. Now a

JP (HL) is pertormed. Sipce 6200 held 06A4, 1in effect a CALL 0&6A4 has
been performed.

The routine at 0&6A4 perftorms two functions. Firstly it handles the
processing of bytes 01 and 02 (set INK or paper colour? and secondly
it decides whether or not the byte to be output 1is one of the
remaining special bytes or a normal /graphic character byte. S50 now a
split is made.

Remaining Special Bytes.

I+ the byte is a special then a jump is made to O6CE. The code here
picks an address ogut of a table located from 0&8EA to 0729 and then a
jump 15 made to that routine.

The troutine addresses are listed below beside their byte number. It
should bBe noted that routines 00,01,02,03%,11,1A and 1B are simple
returns since these options are not implemented.

an O6CD a1 0&CD a2 0&6CD a3 0sCH
a4 0762 D5 48o0c 046 0787 a7 092D
08 0820 09 07A2 of O77E OB OACDE
oC ODES oD O7R7 0E 0823 OF 0gZ2E
10 0768 11 G&6CD 2 073C 13 O76F
14 0734 15 0736 14 O7DE 17 07463
18 a72A 19 0730 1A 0&CD 1B 0&CD
iC a810 10 0788 1E 0o7C1 iF 0778

Normal and Graphics Characters.

Normal characters are 1n the range 20 to 7F and graphics characters
are in the range EO to F?. & call is made to 62B8 where the bhytes L3
A OO0 may be found. Hence a call 1s made to 0G%A.

At 009A the routine decides whether or not the character is to be
printed normal height or double height. It decides this by looking at
the byte stored at &6273. Location 6273 contains either 20 for normal
height or 40 for double height. I711 explain normal height characters
first and then explain how double height characters are formed.

Normal height

A jump is made to 00OC2. Here the main register set is pushed onto the
stack and a call made to O0QE7. At O0E7 a call is made to a routine at
OOCE which will work out where the 10 bytes of data which will form
the character are stared. Bit 7 of the A register {which holds the
character) is tested to see i+ it is a normal character or a graphics
character and the appropriate offset is picked up from either &2Z4F or
&271. The routine then calculates where the 10 bytes of data are
which will form the character. A return is made to O0DEB. The cursor
horizontal position is examined to see where on the screen the
character is to be placed.

The Hardware

Now consideration must be given to the hardware. The screen is made
up of 254 pixels across by 248 pixels down. The hardware for this
arrangement is 32 bytes across (32 times B bits 1= 25858) by 248 bytes
down. In a sense then, the screen may be considered to consist of 32
B8-bit columns. This 1s important because characters are & bits wide
and consequently they may be placed entirely in one column or they
may straddle two columns. In fact there are eight different horizon
~tal placements for the character. It may start in any oane of the
eight bits of a column.

In the LYNX the situation has been simplified somewhat by the fact
that the FRINT 2 option deals with horizontal positions which are

measured in 2 pixel columns. Hence an the LYNX there are only 4
positions to consider. See the diagram below.

=

34 SB[l | dOLUMA S

Jﬂ'-'r‘]‘—v-—,__.
i
1

Dianras showing the faour opsitices 1 which characters mav be positioned.

Just to recap we are & routines deep, the 10 character bytes have
been located and we have examined the cursor location to see in which
af the four positionsz the character is going tao be put.

Mow a jump is made to one of four routines to take care of each of
the +Hour possible position options. Each routine performs the same
function but each does it slightly differently because it 1is putting

the character into a different position on the screen. I711 explain
the routine for the first position. If yvou want to understand the
others you™11l have to work them out faor yvoursel+f.

At this ctage DE points to the position of the first of the 10 bytes
which will form the character. HiL points to the byte to be changed on
an imaginary screen of 32 bytes by 248. {(I’ve described it as an
imaginary screen because later on an offset 1s added to HL to point
to the position on the physical screen).

The routine sets up a loop to work down the screen for 10 rows to
form the character. It then reads a byte from 6275 which is the
overwrite on/off flag. This is either 00 for overwrite off or FF for
averwrite on. This is ORed with 03X Q000 0OGl1 binary?. The result
is loaded into the C register for safe keeping. The Ffirst of the
character bytes 1s loaded into the A register. Two left rotates are
pertormed to get the bits defining the character into the six most
significant bit poasitions. Now the byte is ANDed with FC (1111 1100
binaryl. This has the effect of setting bits O and 1 to zero. Sc now
the A register has the byte to be output to the screen and € has
either FF or 03 to take care of overwrite.

A call is made to &26C which contains a jump to OBSE. Here the ink
and paper colow are picked up from 625B and 623C. The C register
(overwrite on/off) is loaded into the E register and the A register
{byte to be output}! is loaded intoc the D register.

Now the routine works its way through each of the colours. & call is
made to 0844 to decide if the ink, the paper or both require the
colour BLUE. Upon returning the protection bvte is picked up from
L246E. If BLUE is protected then the next part is skipped. If BLUE is
not protected then the A register is loaded with EB, the &% register
iz loaded with 63 and BC is loaded from location &28E which happens
to contain BOOO.

A call 1s made toc & routine at 08B4. HL has the lacation of the
character on the imaginary screen. HL has BC added to it to generate
the physical position in memory. The byte 63 {(A” reqgister) is sent
out to port 7F. The byte 40 is output to port 80 and then followed by
the byte EB (A register). Now the byte pointed to by the HL register
pair is read into the A register. The A register is modified by
ANDing it with the E register. The E register either contains FF or
03. By ANDing it with the byte which has been read off the screen the
part of the byte that has nothing to do with our character has been
left alone. In addition if overwrite is on ie E contains FF then all
the bits which were set in the bvte read from the screen will remain
set. Next the byte is ORed with the D register. This has the effect
of modiftying the byte so that it forms part of the character we wish
to display. After modification the byvie is written back to where it
came from. Zero is then sent out to port 80 and 7F. Now a return is
made for the next colour.

The next colour is RED. If RED is not protected then the same bytes
are loaded into registers A and A’ but this time BC is loaded from
6220 which contains CO00. A call is made to 08B& as it was for BLUE.
Finally, if 1its not protected, GREEN is done. The A register is

lpaded with E4, the A register is loaded with 65 and BC is loaded
from &292 which contains CO00O.. The final call is made to 08BB&.

Now the code returns to loop down the screen to put out the 10 bytes
which form the character.

Do you see why the LYNX is a little on the slow side when i1t comes to
displaying text 7

Double Height Characters

Double height characters are handled by outputting each of the 10
character bytes twice. Once in the normal position and once beneath
it. This is achieved by using the normal routine for the first byte.
Then the BC offset {(normally COO0 or 8000) is set to be either CO20
or 8020. Then the normal routine is called a second time. Finally the
offsets are reset to their original values. By increasing the BC
agffset by 20 {decimal 32) the second time the byte 1is displayed it
appears on the screen beneath the ftirst byte. Since all 10 bytes are
displayed twice in this manner a double height character is formed.

tlsing 1t from Basic

How do you put data out to the screen from Basic 7 The simple answer
to that guestion is with difficulty. The main problem is that as soon
as you switch in the video ram you switch out the program ram. I+ you
try performing the various outputs to ports 7F and 80 using program
ram the LYNX will crash. What happens is that the program counter
suddenly goes from pointing at the real program to pointing at the
videc ram. The 780 then picks up ijunk and a crash results.

So routines to use the video ram must be in eprom. This limits most
LYNX wusers to the routines in the eproms already. I+ your eproms are
the same as mine then you will be able to pick up the routines at the
addresses I've detailed. If not then the best way is to pick up the
routines by calling their ram pointers. As an example the routine
pointed to by &626C could be used.

This routine needs the A& and C registers set up plus the HL register
pair. The A register has the byte to be put out to the screen-. The C
register has the overwrite on/off byte. The HL register pair points
to a location on the screen. It should be in the range 0 to 2000.
Here, then, is a simple demonstration program.

The machine code in line 40 looks like this :1-—
LD A,xH
LD Coxx
JP 6260

The “®x° bytes don"t matter since they get overwritten by the
program.

i0
20
30
4G
S0
&0
70
80
S0

CLS

REM Set up a machine code routine

REM it sets registers & and C

CODE 3E »x OE xx C3 &6C &2

REM Ffind the position of the "3E7 in line 40
LET A=LCTHM(40)

REM randomise the byte to be output

FOKE A+t ,RAND(254)

REM randomise which bit should be put out

100 POKE A+3,.RAND (29562
110 REM randomise the colour by changing the protection

12
i1
13

14

0O POEE 2&626B,RAND (B)

0 REM call the routine with a random HL value.
Q CALL a,RAND(&2000)

o GOTO BO

SuUUFFiAaRY OF CODE

Z5E9 Routine to put cut a line of te=xt.

®x BN B8 EE 4§ ®) gp M@ W EF QF HE w3 @W wus W4 @s WE FA &F 4N W@ E§ HF HW ¥F W@ km ®a AN mE

Z52F routine to output a single byte.

203C print/don”t print routine.

E200 (0D6A4) Normal /special split

Normal characters

H2EE (00O28) singlefdouble height characters
DOE7 Locate location for character on screaen

Work out which of four routines to jump to
For position 1 — 0130

For position 2 — O14R

For position 3 — 01B? &% Q1%9E

For position 4 - 0181 & 01484

&GZ2CAH {0835E) Work through the colours

B UE A=E8; A =4F; BC=B0O00

8B4 Output byte to screen.

5 o RED A=E8; A =43%:; BC=CO0OO
= : 0844
: = OBBES
= = BREEN fA=Ed; A"=45; BRC=C0OOO
= =z 0844
: & 0OBBS
: return

return

Special characters

Jump to special routine
return

return

return

@y ai ay Ed ws EF gm OF m@ A0 gs NN mE W R WA mw #® aw HE Ax @k we 67

Bd EN gy SN Fm w; e Ny Em Wp wp 4N gx HE §e¢ AW F¥ ME a¢ 5 W@ Bd we 40 @i W® pm WD
Be §F am g A4 ey 4F a¢ 0 wd U0 gy NP B ER Wy EE ¥ GH wwW WE wp RF Hx T m

Adjust cursor position
Return for next character.

return to calling routine

0844 Decide if ink and/or paper need blue

byvte

= OOCE Load HL with the address of the 10 bytes

USE THAT SPaRE SOCEET

Perhaps vyou have have had the lid oft yvour LYNX and seen the spare
eprom socket sitting next to the two 2764 eproms. I+ you think about
the memory map Ffor a minute you will soon realise that there is a
‘missing’ BK between the Basic/Monitor eproms and the ram. You don’t
need to be Sherlock Holmes to deduce that the spare eprom socket is
wired into this 8K block.

Wouldnt it be nice i1+ we could use this socket? OFf course i1f you
have access to an eprom blower which will handle 2764s then vour
lucky. but who has 7 I own & blower which will blow 2716 eproms. Now
there are guite a few blowers around which can blow these. If you
don’t own one then ask around at your local computer club. I°m sure
yvou®ll Find ane 1+ you try. What do you mean you don’t belong to a
club? JdJoin one!

I found out that the Basic DISK command exscutes at 402D. Thais is in
the spare eprom socket. This then gives a convenient way to execute
any programs located in the eprom. just type DISK. Of course 1§ the
DISKE command executes at 402D then 1t seems reasonable to assume that
another chip is on its way to put i1n the socket when disks are added.
However this doesn™t matter. When I°ve got disks 1 wont need programs
stored in eproms.

The idea then was to fit a 2716 eprom 1nto the socket =somehow. The
first problem to be considered is that a 27464 has 28 pins whereas a
27146 has only 24. However 1f you look at the pin assignment diagrams
opposite you will see that only two pins on the 2716 require
attention {(pins 21 and 24}). So 1f a 28 pin socket 1is slightly
modified by bending pips 23 and 26 out and up and then these are
connected to pin 28 with a piece of wire, an adaptor for a 2716 1s
formed. Two safety measures are advisable. Firstly put blobs of
solder on pins 1,2 and 27 of the socket. This will prevent you from
putting the 27146 in the wrong holes. Secondly put a piece of tape
under the high numbered pins of the socket. This 1s to prevent any
connection bhetween the bent up pins and the socket on the LYNX.

You may ask what are yvou going to put in the epraom 2 HWell my next
project is tao add a PIO (Parallel Input Output chip) to my LYNX. I
will then be able to drive a parallel printer and link my LYNX up to
my other machine. The eprom will hold the necessary code to
initialise the PIO and set up an address at 62BB to call the printer
interface routines.

It was stated in the article on Output to the Screen that graphics
routines must be in eprom. I have some ideas in that direction as
well., Finally I would like to link my LYNX te my other micro, then I
wowld be able to write code in assembler on the other machine and
transfer it to the LYNX for running.

One final point. Be very careful how you put the adaptor into the
socket and the 27148 1nto the adaptor. Its very easy to bend the pins
and even easier to put the eprom in the wrong way round (I speak +from
experience)} .

Vep _/ +5

RILY PG
ar [N | tF AT N
A VRAE b Ag
AS A3 AS 7o
At | Ve A4 Al
A3 OE A3 0E
AL | RO A2 Alo
Al CE Al ‘ CE
Az D7 AD 07
il Db Do ! pe
ol D5 Dl 05
D2 D4 Dz D4
GND D3 GND | D3

|
2716 2764

1716 EPROM

—

PIN 1

@?F%EHDUE@\H PI 1
! D
BEND PINS 13 £12¢ - e _ThPE
- T
e — ‘_“-“\-—%
. e T

USEFLIL. L OCAT IORNS

There is a block of memary running from AlEE to &2C0 which is
initialised when the LYNX is switched on. It contains many useful
addresses, pointers, and data bytes. I haven’t worked them all out yet
but those which 1 have are listed below. The layout takes the form -

First address ., End address . Data . Notes.

it should be noted that the data bytes are initialisation values and
they may change. I+ anyone has any more information on this tlock of
ram then please let me know and I will print an update i1n a subseguent
issue.

&1EE &1EF OOFF Stack pointer is saved here. Used by HIMEM routine.

61FQ &1F0 01 Set up by RANDOM. This byte is used as a seed in the
gensration of random numbers,

L1F4 6H1FS 0000 The storage for HL after a return from a machine code
routine.

&1F6 &1F7 05346 Used by RUNM to store a pointer to where the program has
reached. The data 05347 polnts to a memory location which contains the
byte 80. This wmay then be tested for continue / cannot continue
condition.

A1FB &41FF 469 A pointer to the byte before the start of the program.
41FA &1FR 4D&T & pointer to the start of the program.

&1EC &1FD 4D&9 A pointer to the end of the program.

L£2058 &70&4 01 This 15 used by LINE and as a print/don’t print flag.

AH20F 4210 G767 Pointer to start of scalar variables ie A.B etc. in
actual fact the wvariahles are stored from 6&670C onwards. Scalar
variables take five bytes each.
&£71% &214 E448 Pointer to the start of a list of pointers to the string
variables. The pointers take four bytes each. Only the first two bytes
are used.

£215 6216 6813 A pointer to a list of execution addresses for a list of
Basic words.

4217 4218 E111 A pointer to a list of Basic waords.

£219 6218 1614 & pointer to a list of Basic words.

&21RB &21C 4015 A pointer to a list of routine addresses used for the
validation of Basic words.

621D &21E F615 A pointer to a list of routine address for Basic words.
6721F &220 4E4&9 Address to the next free byte of memory atter the
pragram or the data.

&221 &2Z23F C3I 3C 27 EXT validation address.

L7274 &226 C3 32 3B EXT execution address. This jumps to the routine
which prints “NOT IMPLEMENTED YET'.

&34 236 00 Used to store bytes read from port 8o,

4258 6254 0F Cursor horizontal position.
A255 6255 05 Cursor vertical position-

256 &259 O3 7B 05 FO Window size.
L25A 625/ 00 Cursor on/off flag: O for cursor off, 1 for cursor on.
A258 &25B 07 INE colour.
LZ2SC &25C 00 Faper colour.

&250 &25E 0002 Cursor speed.

LZ25F 4260 Z20OEF Cursor characters.
4261 6261 00 This byte is used to flag SPEED and TRACE options.Bit 0 is

10

used by TRACE. Bit 1 is set 1+ the SPEED option 1s in use.

as the SPEED ctare.

L2462 6264 C3 BE OF Jump to & graphics routine.
6247 &2468 0000 Braphlcs cursor.

&26R &426B 00 PROTECT store.

6260 626E CF SE 08 Call to character ocutput routine.
LH26F &270 400 Offset for normal characters.
6271 &272 D401 Graphics characters offset.
L27E &274 20 00 Test byte for normal /double height characters. Hex 20

is for normal height,
G275 6275 0D Overwrite onfof+f.

FF +aor overwrite on.

40 is for double height characters.
Set this byte to Q0 for overwrite off,

H2C1 1s used

Now here are some execution addresses for Basic words which are not in
these
may be used but it tuwrned into another heavy—weight article like OUTPUT
TO SCREEM so it will have to wait for ancther issue.

the manual. I had hoped to print am article on how

42746 7628 CZ 32 3B
routine which will
&279 AZ7R CE 72 IH
routine which will
&27C &27E CE 32 3R
routine which will
H27F &281 CE 32 AR
routine which will
S282 62B4 L3I 2 2B
routine which will
&Z85 &28B7 C3 32 3B
routine which will
&£288 &28A/ C9 00 GO

LIGHTFEN execution address.

print

JOYSTE execution address.

print
USERG
priot
LUSER1
print
USERZ
print
USERZ
print
Error

*NDT YET IMFLEMENTED”

THDT YET IMFPFLEMENTEDT

It is set to

execution address. It i1s

*MOT YET IMPLEMENTED?
execution address. 1t
THMOT YET IMFPLEMENTEDR?
execution address. It

TNOT YET IMFLEMENTED® .

execution address. It
*NOT YET IMPLEMENTED®

trap address. This location is

orinting an error message.

&Z8E &28F 0080 Offset for blue colour bank.
290 5291 o0 Offset for red colowur bank.
L2292 &2%9F 00CO OFffset for green colour bank.

&294 4294 C3E 32

set to jump to a routine which prints
H29A L29R EFEB Polnter to start of error messages.

is

15

is

It is =set

set

set

set

set

to

to

to

to

to

extra words

jump to a

jump o a
jump to a
jump to a
jump to a

jump ta a

called before

HZPC 629F 5001 0403 Baud rate set up by the TAPE command.
loaded from area CAOD ODC4.
HZ2A1 42042 00D Pointer to data +for SOUND.

H2AR3 62A5S CZ D4 OC A jump to a routine which will scan

the 17 kev. All other keys are disabled.
&£2B8 &2RA CZT 94 OO Character output routine.
AZRR A2BD CZ EZ2 10 Jump to line input routine.

the

Have vyou found the word TEXT vyvet? Its to only word in the

is not in the manual and which works.

paper to black and then it clears the screen.

BERE AR KEY

This is still a mystery to me.

1

It sets the

1nk

to

Hazs anvone found out how to

3B HMon maskable interupt jumps to this address. It is
TNOT YET IMFPFLEMENTED® .

The data is

keyboard for

eproms which
green, the

use it 7

ERERGOR HFHMESSAaAGES

There 15 a very nice feature of the LYNX Basic which impressed me when
I f ound it. The error routine picks up a pointer to the licst of error
messages froam &29A. It points to a null before the first error message.
The pocinter at 4298 mavy be changed to point to a list of vour own error
messages. 1hs could be used to make the LYNY ultra user—friendly.

In the short program which follows a list of ervror messages i= set up
which simply =ay "ERROR #x" {(where ux is the error number). Its really
a demanstration program rather than of any practical walue. Doing it
this way allows a lot of error messages to be set up very easily. In
practice the messages should be a lot more helpful than those normally
issued. As an example the seventh error message "SYMTAX ERRORY could be
rewritten as "You have typed something 1 don™t understand". To save
space comments appesr on the end of the lines in sguare brackets. Don”t
tvpe them in' .

100 REM ERROR vz [A& data 1line. It gets zapped by lines 170 and 1801
110 LET F=LCTN{100) [6 pointer to the E in ERROR]

120 LET L=%9000 [Where the new list i1is to be constructed]l

Z0 DFOEE &&429A.L [Set pointer to new listl

140 FOR I=1 TO 20 (Mow set up 20 error mescages]

150 FOKE L.9O [The first nulll

150 LET L=L+1

17 POEE PH&R0O0Z0O+INTL(IA10) EQverwrite the “v7 in linme 1007
180 POEE P+7,&0030+10%FRAC(IA10Y [Overwrite the "z7 in line 10437
190 FOR =0 TO 7 [Now copy the new error message into the list]
200 POKE L ,FEEE (P+ED}

210 LET L=L+1

220 NEXT E
2Z0 POKE L,0 [(The last noulll

RUM the program and then try typing ERROR 7 or 10070

RESET NI oy Maskabl e Imterwpt)

Have vou ever corashed the system and had to switch off and start again
? My other micro has a very simple way out of this problem - you press
the reset button. This starts execution at Q000 which is where the
MOMITOR is. You may then warm start Basic {(a cold start is like the NEW
command and vou lose your program) . Unfortunately., although the LYNX
has the RESET line coming out the back 1t 1s not possible to uwse 1t
because i1+ the reset button were pressed the LYNX would cold start and
vou would lose everything.

There is, however, a dNon Maskable Interupt line which could be used.
The IBD recognises three tvpes of maskable interupts {ie i1t canm be
programmed to ignore them! and cone NMI. The NMI executes at 00&64. This
jumps to 4294 which jumps to FBEZ2 and prints "NOT YET IMPLEMENTED® .
Laocation &294 could be FOKEd to point back into the Basic code. This
would ,1n eftect, give the LYNX a reset facility. 1711 write the code
if someone will design the hardware. Any offers ?

12

EARN EXTRA CASH

BRI EES PRl e X dinas
REVIEWS WRITE FOR

NILUG NEWS.
PROGRAMS WOULD YOU LIKE TO
Send to the ADVERTISE HERE?
tEhglgdocli:{r;;s below. AP0

Advertising Manager
at the address below.

SUBSCRIPTIONS
U.K. £9-00 (6 ISSUES)

Send cheques, payable to NILUG to :-

53, KINGSWOOD AVENUE,
SANDERSTEAD,

SOUTH CROYDON,
SURREY CR2 SDAQ.

NATIONAL INDEPENDANT LYNX USER GROUP

53 KINGSWOOD AVENUE Editor: ROBERT POATE
SANDERSTEAD

SOUTH CROYDON

SURREY CR2 9DQ.

The central aim for NILUG is to assimilate and disseminate information
about the LYNX for the benefit of members. By acting as a clearing

house for ideas and tips members will be able to get much more from
their machines.

The main offering is NILUG NEWS which will be published six times a
vear. Members may submit articles, reviews, programs and letters for

publication. The authors of the published articles will recieve payment
for their efforts.

NILUG NEWS will take advertising although it will be limited to say 154
af the newsletter. Taking advertising has two advantages for members.
Firstly i+ keeps the cost of membership down. Secondly it allows
members to see what products are on the market for the LYNX without
having to search through pages of adverts for other machines.

Subscriptions to NILUG are £7.00 per yvear (U.E.).

I¥f yvou would like to join NILUG please complete the section below :1—
Make chegues payable to NILUG.

= = = == FLEASE FRIMNMT = = = =

NAME: = — — — — — — — — — — — — — — — — — — — - — — — — — — — — -

ADDRESS: — — — — = = = —

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

